Ab initio reaction path analysis for the initial hydrogen abstraction from organic acids by hydroxyl radicals.

نویسندگان

  • Wenjie Sun
  • Liming Yang
  • Liya Yu
  • Mark Saeys
چکیده

Hydrogen abstraction from organic acids by hydroxyl radicals is the initial rate- and selectivity-determining step in the photochemical oxidation of organic acids in the troposphere. To quantify the rate and selectivity of these reactions, the abstraction of hydrogen atoms at the acid, alpha, beta, gamma, and methyl positions was studied for valeric acid, C(4)H(9)COOH, using first principles calculations. At the high-pressure limit, an overall rate coefficient at 298 K of 4.3 x 10(6) m(3)/(mol s) was calculated. The dominant pathways are abstraction at the beta; the gamma; and, to a lesser extent, the acid positions; with a selectivity of 55, 28, and 8%, respectively. This differs from the high selectivity for the acid channel for formic and acetic acids and from the thermodynamic preference for abstraction at the alpha position, but it is consistent with the experimentally observed preference for the beta and the gamma positions in larger organic acids. The rate and selectivity are controlled by the strength of hydrogen bonds between the acid group and the hydroxyl radical in the different transition states and do not correlate with the stability of the products. Natural bond orbital analysis was used to quantify the nature and strength of the hydrogen bonds. At 298 K and below 0.1 atm, the collision frequency is insufficient to stabilize the prereactive complexes, and the reaction becomes chemically activated. However, the reaction rate and the selectivity are largely unaffected by this mechanistic change.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab Initio Theoretical Studies on the Kinetics of the Hydrogen Abstraction Reaction of Hydroxyl Radical with CH3CH2OCF2CHF2 (HFE-374pc2)

The hydrogen abstraction reaction of OH radical with CH3CH2OCF2CHF2 (HFE-374pc2) is investigated theoretically by semi-classical transition state theory. The stationary points on the potential energy surface of the reaction are located by using KMLYP density functional method along with 6-311++G(d,p) basis set. Vibrational anharmonicity coefficients, ...

متن کامل

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

Computational Study of the Kinetics of Hydrogen Abstraction from Fluoromethanes by the Hydroxyl Radical

One of the fastest steps in the initial decomposition of HFCs under combustion conditions is hydrogen atom abstraction by hydroxyl radicals. We have utilized ab initio quantum mechanics and transition-state theory (TST) to calculate the temperature dependence of rate constants for the reactions of OH with CH4, CH3F, CH2F2, and CHF3. Rate constants calculated using HF/6-31G(d) frequencies and MP...

متن کامل

A theoretical study on the metabolic activation of paracetamol by cytochrome P-450: indications for a uniform oxidation mechanism.

The cytochrome P-450 mediated activation of paracetamol (PAR) to the reactive electrophilic intermediate N-acetyl-p-benzoquinone imine (NAPQI) has been studied by use of SV 6-31G ab initio energy calculations and spin distributions. A simplified model for cytochrome P-450 has been used by substituting the proposed biologically active ferric-oxene state of cytochrome P-450 by a singlet oxygen at...

متن کامل

Experimental Determination of Hydroxyl Radical Reactivity in Supercritical Water Using Pulse Radiolysis

Complete mineralization of hazardous organic compounds to innocuous products can be achieved using supercritical water oxidation (SCWO). At typical SCWO process conditions (500 – 650 °C), free radical chemistry has been shown to be the dominant reaction path. Detailed Chemical Kinetic Mechanisms (DCKM), consisting of elementary free-radical reactions, have been used to model the oxidation of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 113 27  شماره 

صفحات  -

تاریخ انتشار 2009